If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-1900=0
a = 1; b = 1; c = -1900;
Δ = b2-4ac
Δ = 12-4·1·(-1900)
Δ = 7601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{7601}}{2*1}=\frac{-1-\sqrt{7601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{7601}}{2*1}=\frac{-1+\sqrt{7601}}{2} $
| 5 | | Y=3(1.61)^t | | 3(2-6x)=4(4x-0.5)-2x | | x²+4x-100=0 | | ( | | 2x+(x+5)=-x-11 | | 3(2x-4)-2x=-8 | | (2x+5)(3x-1)+(3x-4)(2-3x)=-3x2+28x+17 | | | | 8x+4=-2x+64 | | | | 2y²+4=5,6y | | | | | | | | | | 36=0.2x+((4x/5)/5) | | 3(2x+5)=3x/4+36 | | 7h-11=52h= | | X+98+x=180 | | 1/2n+15=42 | | 8n/2=24 | | (n/56)-2=3 | | 4x+6=46−4x | | 3x=65=2x-20 | | 8x+5(x-1,25)=31,6 | | 8x+5x-5,25=31,6 | | -3-12s=33 | | 3p-2/3=1/3 | | 475x=350x+1500 | | 6x-3(12-x)=9 | | 4=2q+6 |